3 resultados para tacrolimus

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

By searching the literatures, it was found that a total of 32 drugs interacting with herbal medicines in humans. These drugs mainly include anticoagulants (warfarin, aspirin and phenprocoumon), sedatives and antidepressants (midazolam, alprazolam and amitriptyline), oral contraceptives, anti-HIV agents (indinavir, ritonavir and saquinavir), cardiovascular drug (digoxin), immunosuppressants (cyclosporine and tacrolimus) and anticancer drugs (imatinib and irinotecan). Most of them are substrates for cytochrome P450s (CYPs) and/or P-glycoprotein (PgP) and many of which have narrow therapeutic indices. However, several drugs including acetaminophen, carbamazepine, mycophenolic acid, and pravastatin did not interact with herbs. Both pharmacokinetic (e.g. induction of hepatic CYPs and intestinal PgP) and/or pharmacodynamic mechanisms (e.g. synergistic or antagonistic interaction on the same drug target) may be involved in drug-herb interactions, leading of altered drug clearance, response and toxicity. Toxicity arising from drug-herb interactions may be minor, moderate, or even fatal, depending on a number of factors associated with the patients, herbs and drugs. Predicting drug-herb interactions, timely identification of drugs that interact with herbs, and therapeutic drug monitoring may minimize toxic drug-herb interactions. It is likely to predict pharmacokinetic herb-drug interactions by following the pharmacokinetic principles and using proper models that are used for predicting drug-drug interactions. Identification of drugs that interact with herbs can be incorporated into the early stages of drug development. A fourth approach for circumventing toxicity arising from drug-herb interactions is proper design of drugs with minimal potential for herbal interaction. So-called ”hard drugs” that are not metabolized by CYPs and not transported by PgP are believed not to interact with herbs due to their unique pharmacokinetic properties. More studies are needed and new approached are required to minimize toxicity arising from drug-herb interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herbs are often administered in combination with therapeutic drugs, raising the potential of herb-drug interactions. An extensive review of the literature identified reported herb-drug interactions with clinical significance, many of which are from case reports and limited clinical observations.
Cases have been published reporting enhanced anticoagulation and bleeding when patients on long-term warfarin therapy also took Salvia miltiorrhiza (danshen). Allium sativum (garlic) decreased the area under the plasma concentration-time curve (AUC) and maximum plasma concentration of saquinavir, but not ritonavir and paracetamol (acetaminophen), in volunteers. A. sativum increased the clotting time and international normalised ratio of warfarin and caused hypoglycaemia when taken with chlorpropamide. Ginkgo biloba (ginkgo) caused bleeding when combined with warfarin or aspirin (acetylsalicylic acid), raised blood pressure when combined with a thiazide diuretic and even caused coma when combined with trazodone in patients. Panax ginseng (ginseng) reduced the blood concentrations of alcohol (ethanol) and warfarin, and induced mania when used concomitantly with phenelzine, but ginseng increased the efficacy of influenza vaccination. Scutellaria baicalensis (huangqin) ameliorated irinotecan-induced gastrointestinal toxicity in cancer patients.
Piper methysticum (kava) increased the 'off' periods in patients with parkinsonism taking levodopa and induced a semicomatose state when given concomitantly with alprazolam. Kava enhanced the hypnotic effect of alcohol in mice, but this was not observed in humans. Silybum marianum (milk thistle) decreased the trough concentrations of indinavir in humans. Piperine from black (Piper nigrum Linn) and long (P. longum Linn) peppers increased the AUC of phenytoin, propranolol and theophylline in healthy volunteers and plasma concentrations of rifamipicin (rifampin) in patients with pulmonary tuberculosis. Eleutheroccus senticosus (Siberian ginseng) increased the serum concentration of digoxin, but did not alter the pharmacokinetics of dextromethorphan and alprazolam in humans. Hypericum perforatum (hypericum; St John's wort) decreased the blood concentrations of ciclosporin (cyclosporin), midazolam, tacrolimus, amitriptyline, digoxin, indinavir, warfarin, phenprocoumon and theophylline, but did not alter the pharmacokinetics of carbamazepine, pravastatin, mycophenolate mofetil and dextromethorphan. Cases have been reported where decreased ciclosporin concentrations led to organ rejection. Hypericum also caused breakthrough bleeding and unplanned pregnancies when used concomitantly with oral contraceptives. It also caused serotonin syndrome when used in combination with selective serotonin reuptake inhibitors (e.g. sertraline and paroxetine).
In conclusion, interactions between herbal medicines and prescribed drugs can occur and may lead to serious clinical consequences. There are other theoretical interactions indicated by preclinical data. Both pharmacokinetic and/or pharmacodynamic mechanisms have been considered to play a role in these interactions, although the underlying mechanisms for the altered drug effects and/or concentrations by concomitant herbal medicines are yet to be determined. The clinical importance of herb-drug interactions depends on many factors associated with the particular herb, drug and patient. Herbs should be appropriately labeled to alert consumers to potential interactions when concomitantly used with drugs, and to recommend a consultation with their general practitioners and other medical carers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herbal medicines are often used in combination with conventional drugs, and this may give rise to the potential of harmful herb-drug interactions. This paper updates our knowledge on clinical herb-drug interactions with an emphasis of the mechanistic and clinical consideration. In silico, in vitro, animal and human studies are often used to predict and/or identify drug interactions with herbal remedies. To date, a number of clinically important herb-drug interactions have been reported, but many of them are from case reports and limited clinical observations. Common herbal medicines that interact with drugs include St John's wort (Hypericum perforatum), ginkgo (Ginkgo biloba), ginger (Zingiber officinale), ginseng (Panax ginseng), and garlic (Allium sativum). For example, St John's wort significantly reduced the area under the plasma concentration-time curve (AUC) and blood concentrations of cyclosporine, midazolam, tacrolimus, amitriptyline, digoxin, indinavir, warfarin, phenprocoumon and theophylline. The common drugs that interact with herbal medicines include warfarin, midazolam, digoxin, amitriptyline, indinavir, cyclosporine, tacrolimus and irinotecan. Herbal medicines may interact with drugs at the intestine, liver, kidneys, and targets of action. Importantly, many of these drugs have very narrow therapeutic indices. Most of them are substrates for cytochrome P450s (CYPs) and/or P-glycoprotein (P-gp). The underlying mechanisms for most reported herb-drug interactions are not fully understood, and pharmacokinetic and/or pharmacodynamic mechanisms are implicated in many of these interactions. In particular, enzyme induction and inhibition may play an important role in the occurrence of some herbdrug interactions. Because herb-drug interactions can significantly affect circulating levels of drug and, hence, alter the clinical outcome, the identification of herb-drug interactions has important implications.